(Regular Article)

SPARC Up-Regulates Production and Pericellular Organization of Collagen I and Hyaluronan *via* TGF- β Signaling in Skin Fibroblasts

Masaki KOBAYASHI¹, Hiroyuki YOSHIDA^{*, 1}, Tomomi NAKAMURA, Kohei YAMAZAKI, Yoko ENDO, Tetsuya SAYO, Yoshito TAKAHASHI

(Accepted: April 28, 2021)

Abstract

Background: Secreted protein acidic and rich in cysteine (SPARC) regulates extracellular matrix (ECM) production, interaction of cells with ECM and growth factor-dependent cell signaling. Here we examined SPARC's effects on production and pericellular organization of type I collagen and hyaluronan (HA) in normal human dermal fibroblasts.

Methods: Production of procollagen I and HA, and gene expression were analyzed by ELISA and quantitative real-time PCR, respectively. The pericellular deposition of mature collagen I and HA was examined by immunocytochemistry.

Results: SPARC enhanced production of procollagen I and HA in fibroblasts by up-regulating mRNA expression of *COL1A1 (collagen \alpha-1(I))* and *HAS (HA synthase) 2/3*, respectively. SPARC also increased the deposition of mature collagen fibrils on the cell surface of fibroblasts, accompanying the increased mRNA expression of procollagen C-proteinase (*BMP1*) and N-proteinase (*ADAMTS2*). The pericellular deposition of newly produced HA was also enhanced on the cell surface of SPARC-treated fibroblasts. Furthermore, SPARC up-regulated TGF- β 1 production in fibroblasts, and SPARC-induced procollagen I and HA production was abolished by blockade of TGF- β /Smad2/3 signaling.

Conclusion: SPARC simultaneously up-regulates production of procollagen I and HA in fibroblasts by up-regulating Smad2/3-dependent TGF- β signaling, and also promotes the pericellular organization of mature collagen I fibrils and HA.

Key words: SPARC (BM40/Osteonectin), Skin fibroblast, Collagen I, Hyaluronan, TGF- β signaling.