〈一般論文〉 ## γ-グルタミルトランスペプチダーゼ (GGT) 阻害剤による コラーゲンおよびエラスチン産生能の亢進効果とそのメカニズム 湯浅(小島)明子*,1, 林 綸子1, 韓 立友2, 渡辺文太3, 平竹 潤3, 湯浅 勲1 ## A γ-Glutamyl Transpeptidase (GGT) Inhibitor Enhances Collagen and Elastin Synthesis Akiko KOJIMA-YUASA*, 1, Rinko HAYASHI¹, Liyou HAN², Bunta WATANABE³, Jun HIRATAKE³, Isao MATSUI-YUASA¹ (Accepted: March 2, 2012) ## Abstract A decrease in the quantity and organization of connective tissue is associated with skin aging. Skin connective tissue is composed primarily of fibrillar collagen bundles and elastic fibers. An age-associated reduction in the expression of these dermal connective tissue elements is responsible for skin wrinkling. We have previously reported that a reduction of intracellular glutathione (GSH) levels induces progression of collagen synthesis. In this study, we investigated that the anti-aging effect and the mechanism of action for an inhibitor (GGsTopTM) of γ -glutamyl transpeptidase (GGT), an important enzyme in glutathione (GSH) degradation, using human skin fibroblasts and the HaCat keratinocyte cell line. A treatment of human skin fibroblasts with GGsTopTM induced collagen and elastin synthesis and increased the expression of α -smooth muscle actin (α -SMA). Additionally, GGsTopTM induced the expression of heat shock protein 47 (HSP47), a collagen-specific molecular chaperone. After 24 hours of treatment, the levels of transforming growth factor- β (TGF- β) secretion were significantly elevated. However, the expression of matrix metalloproteinase-1 (MMP-1) was not affected by the treatment of GGsTopTM. Cells treated with GGsTopTM also showed an increased production of intracellular reactive oxygen species (ROS) level after 6 h. Conversely, intracellular GSH levels were reduced at 8 h after treatment. Furthermore, GGsTopTM treatment also enhanced the migration of HaCaT keratinocytes. Collectively, these results provide new insights into the cosmetology of GGsTopTM in human skin fibroblasts and keratinocytes and suggest potential applications in the treatment of aging skin. **Key words:** γ-glutamyl transpeptidase (GGT) inhibitor, human skin fibroblasts, HaCaT cells, collagen, elastin.